作者单位
摘要
西北工业大学物理科学与技术学院,光场调控与信息感知工业和信息化部重点实验室,陕西省光信息技术重点实验室,陕西 西安 710129
贝塞尔光束以其独特的无衍射传输特性得到了广泛的关注,在光学操控、光学加工、信息传输、光学成像等领域具有巨大的应用前景。为了丰富光束的传输特性,通过不同手段对贝塞尔光束传输的调控成为了热点问题。研究者提出不同的理论和方法,通过对贝塞尔光束进行不同维度的调控,构造了沿任意轨迹传输、轴上强度和偏振可调的新型类贝塞尔光束。从贝塞尔光束的基本特性出发,总结了近年来贝塞尔光束传输调控相关的研究进展,包括贝塞尔光束的传输轨迹控制、轴向强度和偏振态控制、束宽控制等基本调控手段,并分析了其传输和调控机理。
光场调控 无衍射光束 贝塞尔光束 光传输 
光学学报
2024, 44(10): 1026001
作者单位
摘要
西北工业大学物理科学与技术学院光场调控与信息感知工业和信息化部重点实验室陕西省光信息技术重点实验室, 陕西 西安 710129
为了满足长波红外(LWIR)热像仪在宽温度范围下连续变焦的需求,基于LWIR 320 pixel×320 pixel型红外探测器,设计了一款非制冷长波红外连续变焦光学系统。该系统可在宽温度范围下实现无热化,采用常见的硫系玻璃,工作波段为8~12 μm,总长为200 mm,仅由7片透镜组成。通过引入偶次非球面,可以使系统色差和轴外像差得到良好的校正,同时选用后固定组的最后一片透镜充当温度补偿组来调节焦距实现无热化。分析结果表明,该系统结构紧凑,可以在-40~60 ℃温度范围内和60~180 mm焦距范围内连续平滑变焦,并且全程成像质量良好(调制传递函数在20 lp/mm处均大于0.3),变焦和公差也具有良好的可实现性。
光学设计 红外变焦系统 长波红外 像质评价 
光学学报
2024, 44(7): 0722002
Author Affiliations
Abstract
Northwestern Polytechnical University, School of Physical Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China
Optical cavities play crucial roles in enhanced light–matter interaction, light control, and optical communications, but their dimensions are limited by the material property and operating wavelength. Ultrathin planar cavities are urgently in demand for large-area and integrated optical devices. However, extremely reducing the planar cavity dimension is a critical challenge, especially at telecommunication wavelengths. Herein, we demonstrate a type of ultrathin cavities based on large-area grown Bi2Te3 topological insulator (TI) nanofilms, which present distinct optical resonance in the near-infrared region. The result shows that the Bi2Te3 TI material presents ultrahigh refractive indices of >6 at telecommunication wavelengths. The cavity thickness can approach 1/20 of the resonance wavelength, superior to those of planar cavities based on conventional Si and Ge high refractive index materials. Moreover, we observed an analog of the electromagnetically induced transparency (EIT) effect at telecommunication wavelengths by depositing the cavity on a photonic crystal. The EIT-like behavior is derived from the destructive interference coupling between the nanocavity resonance and Tamm plasmons. The spectral response depends on the nanocavity thickness, whose adjustment enables the generation of obvious Fano resonance. The experiments agree well with the simulations. This work will open a new door for ultrathin cavities and applications of TI materials in light control and devices.
topological insulator optical nanocavity photonic crystal electromagnetically induced transparency-like effect 
Advanced Photonics
2024, 6(3): 036001
作者单位
摘要
西北工业大学物理科学与技术学院光场调控与信息感知工业和信息化部重点实验室,陕西省光信息技术重点实验室,陕西 西安 710129
基于ARTCAM-407UV-WOM型紫外探测器,结合光学系统成像性能要求和光学元件成像特性,提出一种基于Qcon非球面和衍射表面的日盲紫外折衍混合变焦光学系统设计方法。所设计的系统仅由5块透镜组成,采用氟化钙和熔融石英两种材料,工作波段为0.24~0.27 μm,连续变焦范围为40~100 mm。分析结果显示,该系统在整个变焦范围内,奈奎斯特空间频率在11 lp/mm处的调制传递函数值均高于0.7,全视场畸变小于0.06%,表明该设计方法能够满足日盲紫外连续变焦系统结构简单、体积小、像质优良、像面稳定等设计和刑侦检测使用要求,对此类光学系统的设计具有一定借鉴意义。
光学设计 混合光学系统 Q型非球面 日盲紫外光 变焦光学系统 
光学学报
2024, 44(4): 0422003
苏盈文 1陆华 1,*石首浩 1李頔琨 1[ ... ]赵建林 1,**
作者单位
摘要
1 西北工业大学物理科学与技术学院光场调控与信息感知工业和信息化部重点实验室,陕西省光信息技术重点实验室,陕西 西安 710129
2 兰州理工大学理学院,甘肃 兰州 730050
本文研究了金属光栅表面等离激元与单层二硫化钨激子的耦合共振特性。利用时域有限差分法模拟了一维金光栅/单层二硫化钨混合结构的光谱响应及电场强度分布。结果表明,金光栅表面等离激元与单层二硫化钨激子耦合可产生光谱劈裂。当改变金光栅的结构参数时,混合结构的反射光谱出现了明显的反交叉现象。采用时域耦合模理论拟合了混合结构不同参数时的反射光谱,拟合结果与数值模拟符合较好。金光栅表面等离激元与单层二硫化钨激子的耦合作用满足强耦合判据。耦合振荡器模型分析结果表明,当金光栅周期为400 nm、宽度为300 nm时,混合结构强耦合光谱的拉比劈裂为54.6 meV,其与时域耦合模理论结果一致。该工作将为表面等离激元与激子强耦合作用的深入研究与器件开发开辟新途径。
表面等离激元 一维金光栅 二硫化钨 激子 强耦合 
光学学报
2024, 44(4): 0424002
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
Based on the transverse-longitudinal mapping of Bessel beams, we propose a simple method to construct a self-similar Bessel-like beam whose transverse profile maintains a stretched form during propagation. Specifically, the propagating-variant width of this beam can be flexibly predesigned. We experimentally demonstrate three types of self-similar Bessel-like beams whose width variations are linear, piecewise, and period functions of propagation distance, respectively. The experimental results match well with the theoretical predictions. We also demonstrate that our approach enables the generation of self-similar higher-order vortex Bessel-like beams.
Bessel beams self-similarity transverse-longitudinal mapping 
Chinese Optics Letters
2024, 22(2): 022601
作者单位
摘要
西北工业大学物理科学与技术学院,光场调控与信息感知工业和信息化部重点实验室,陕西省光信息技术重点实验室,陕西 西安 710129
全金属超表面 几何相位 电磁隐身 高效率 all-metal metasurface geometric phase electromagnetic stealth high efficiency 
光电工程
2023, 50(9): 230119
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
The conversion-efficiency for second-harmonic (SH) in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica, and pulse pump lasers with high peak power are widely employed. Here, we propose a simple strategy to efficiently realize the broadband and continuous wave (CW) pumped SH, by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter. In the experiment, high efficiency up to 0.08 %W-1mm-1 is reached for a C-band pump laser. The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser, but also multi-frequencies mixing supported by three CW light sources. Moreover, broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth. The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes, development of quasi-monochromatic or broadband CW light sources at new wavelength regions.
nonlinear optics second-harmonic generation continuous wave pump high efficiency multi-frequencies mixing broad spectra microfibers gallium selenide 
Opto-Electronic Advances
2023, 6(9): 230012
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures. Here, we report an in-fiber photoelectric device by wrapping a few-layer graphene and bonding a pair of electrodes onto a tilted fiber Bragg grating (TFBG) for photoelectric and electric-induced thermo-optic conversions. The transmitted spectrum from this device consists of a dense comb of narrowband resonances that provides an observable window to sense the photocurrent and the electrical injection in the graphene layer. The device has a wavelength-sensitive photoresponse with responsivity up to 11.4 A/W, allowing the spectrum analysis by real-time monitoring of photocurrent evolution. Based on the thermal-optic effect of electrical injection, the graphene layer is energized to produce a global red-shift of the transmission spectrum of the TFBG, with a high sensitivity approaching 2.167×104 nm/A2. The in-fiber photoelectric device, therefore as a powerful tool, could be widely available as off-the-shelf product for photodetection, spectrometer and current sensor.
tilted fiber grating photoelectric device graphene photoelectric conversion thermo-optic switching 
Opto-Electronic Science
2023, 2(6): 230012
Author Affiliations
Abstract
1 Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
3 Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, and Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
4 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
5 e-mail: zbren@nwpu.edu.cn
6 e-mail: jiangleidi@gdut.edu.cn
7 e-mail: jlzhao@nwpu.edu.cn
The time-delay problem, which is introduced by the response time of hardware for correction, is a critical and non-ignorable problem of adaptive optics (AO) systems. It will result in significant wavefront correction errors while turbulence changes severely or system responses slowly. Predictive AO is proposed to alleviate the time-delay problem for more accurate and stable corrections in the real time-varying atmosphere. However, the existing prediction approaches either lack the ability to extract non-linear temporal features, or overlook the authenticity of spatial features during prediction, leading to poor robustness in generalization. Here, we propose a mixed graph neural network (MGNN) for spatiotemporal wavefront prediction. The MGNN introduces the Zernike polynomial and takes its inherent covariance matrix as physical constraints. It takes advantage of conventional convolutional layers and graph convolutional layers for temporal feature catch and spatial feature analysis, respectively. In particular, the graph constraints from the covariance matrix and the weight learning of the transformation matrix promote the establishment of a realistic internal spatial pattern from limited data. Furthermore, its prediction accuracy and robustness to varying unknown turbulences, including the generalization from simulation to experiment, are all discussed and verified. In experimental verification, the MGNN trained with simulated data can achieve an approximate effect of that trained with real turbulence. By comparing it with two conventional methods, the demonstrated performance of the proposed method is superior to the conventional AO in terms of root mean square error (RMS). With the prediction of the MGNN, the mean and standard deviation of RMS in the conventional AO are reduced by 54.2% and 58.6% at most, respectively. The stable prediction performance makes it suitable for wavefront predictive correction in astronomical observation, laser communication, and microscopic imaging.
Photonics Research
2023, 11(11): 1802

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!